Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Inference on the maximal rank of time-varying covariance matrices using high-frequency data (2110.00363v1)

Published 1 Oct 2021 in math.ST and stat.TH

Abstract: We study the rank of the instantaneous or spot covariance matrix $\Sigma_X(t)$ of a multidimensional continuous semi-martingale $X(t)$. Given high-frequency observations $X(i/n)$, $i=0,\ldots,n$, we test the null hypothesis $rank(\Sigma_X(t))\le r$ for all $t$ against local alternatives where the average $(r+1)$st eigenvalue is larger than some signal detection rate $v_n$. A major problem is that the inherent averaging in local covariance statistics produces a bias that distorts the rank statistics. We show that the bias depends on the regularity and a spectral gap of $\Sigma_X(t)$. We establish explicit matrix perturbation and concentration results that provide non-asymptotic uniform critical values and optimal signal detection rates $v_n$. This leads to a rank estimation method via sequential testing. For a class of stochastic volatility models, we determine data-driven critical values via normed p-variations of estimated local covariance matrices. The methods are illustrated by simulations and an application to high-frequency data of U.S. government bonds.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube