Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

Confidence Intervals for High-Dimensional Linear Regression: Minimax Rates and Adaptivity (1506.05539v2)

Published 18 Jun 2015 in math.ST and stat.TH

Abstract: Confidence sets play a fundamental role in statistical inference. In this paper, we consider confidence intervals for high dimensional linear regression with random design. We first establish the convergence rates of the minimax expected length for confidence intervals in the oracle setting where the sparsity parameter is given. The focus is then on the problem of adaptation to sparsity for the construction of confidence intervals. Ideally, an adaptive confidence interval should have its length automatically adjusted to the sparsity of the unknown regression vector, while maintaining a prespecified coverage probability. It is shown that such a goal is in general not attainable, except when the sparsity parameter is restricted to a small region over which the confidence intervals have the optimal length of the usual parametric rate. It is further demonstrated that the lack of adaptivity is not due to the conservativeness of the minimax framework, but is fundamentally caused by the difficulty of learning the bias accurately.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)