Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Random walks on bifractal networks (2407.16183v2)

Published 23 Jul 2024 in physics.soc-ph

Abstract: It has recently been shown that networks possessing scale-free and fractal properties may exhibit a bifractal nature, in which local structures are described by two different fractal dimensions. In this study, we investigate random walks on such fractal scale-free networks (FSFNs) by examining the walk dimension $d_{\text{w}}$ and the spectral dimension $d_{\text{s}}$, to understand how the bifractality affects their dynamical properties. The walk dimension is found to be unaffected by the difference in local fractality of an FSFN and remains constant regardless of the starting node of a random walk, whereas the spectral dimension takes two values, $d_{\text{s}}{\text{min}}$ and $d_{\text{s}}{\text{max}}(> d_{\text{s}}{\text{min}})$, depending on the starting node. The dimension $d_{\text{s}}{\text{min}}$ characterizes the return probability of a random walker starting from an infinite-degree hub node in the thermodynamic limit, while $d_{\text{s}}{\text{max}}$ describes that of a random walker starting from a finite-degree non-hub node infinitely distant from hub nodes and is equal to the global spectral dimension $D_{\text{s}}$. The existence of two local spectral dimensions is a direct consequence of the bifractality of the FSFN. Furthermore, analytical expressions of $d_{\text{w}}$, $d_{\text{s}}{\text{min}}$, and $d_{\text{s}}{\text{max}}$ are presented for FSFNs formed by the generator model and the giant components of critical scale-free random graphs, and are numerically confirmed.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 17 likes.

Upgrade to Pro to view all of the tweets about this paper: