Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Proximal Survival Analysis to Handle Dependent Right Censoring (2208.07014v2)

Published 15 Aug 2022 in stat.ME, math.ST, and stat.TH

Abstract: Many epidemiological and clinical studies aim at analyzing a time-to-event endpoint. A common complication is right censoring. In some cases, it arises because subjects are still surviving after the study terminates or move out of the study area, in which case right censoring is typically treated as independent or non-informative. Such an assumption can be further relaxed to conditional independent censoring by leveraging possibly time-varying covariate information, if available, assuming censoring and failure time are independent among covariate strata. In yet other instances, events may be censored by other competing events like death and are associated with censoring possibly through prognoses. Realistically, measured covariates can rarely capture all such associations with certainty. For such dependent censoring, often covariate measurements are at best proxies of underlying prognoses. In this paper, we establish a nonparametric identification framework by formally admitting that conditional independent censoring may fail in practice and accounting for covariate measurements as imperfect proxies of underlying association. The framework suggests adaptive estimators which we give generic assumptions under which they are consistent, asymptotically normal, and doubly robust. We illustrate our framework with concrete settings, where we examine the finite-sample performance of our proposed estimators via a Monte-Carlo simulation and apply them to the SEER-Medicare dataset.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)