Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus (1109.2407v2)

Published 12 Sep 2011 in math.AP

Abstract: It is shown that plane wave solutions to the cubic nonlinear Schr\"odinger equation on a torus behave orbitally stable under generic perturbations of the initial data that are small in a high-order Sobolev norm, over long times that extend to arbitrary negative powers of the smallness parameter. The perturbation stays small in the same Sobolev norm over such long times. The proof uses a Hamiltonian reduction and transformation and, alternatively, Birkhoff normal forms or modulated Fourier expansions in time.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.