Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 455 tok/s Pro
Kimi K2 194 tok/s Pro
2000 character limit reached

Modeling Citation Trajectories of Scientific Papers (2002.06628v2)

Published 16 Feb 2020 in cs.SI and physics.soc-ph

Abstract: Several network growth models have been proposed in the literature that attempt to incorporate properties of citation networks. Generally, these models aim at retaining the degree distribution observed in real-world networks. In this work, we explore whether existing network growth models can realize the diversity in citation growth exhibited by individual papers - a new node-centric property observed recently in citation networks across multiple domains of research. We theoretically and empirically show that the network growth models which are solely based on degree and/or intrinsic fitness cannot realize certain temporal growth behaviors that are observed in real-world citation networks. To this end, we propose two new growth models that localize the influence of papers through an appropriate attachment mechanism. Experimental results on the real-world citation networks of Computer Science and Physics domains show that our proposed models can better explain the temporal behavior of citation networks than existing models.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.