Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 205 tok/s Pro
2000 character limit reached

Smooth Fictitious Play in Stochastic Games with Perturbed Payoffs and Unknown Transitions (2207.03109v1)

Published 7 Jul 2022 in cs.GT

Abstract: Recent extensions to dynamic games of the well-known fictitious play learning procedure in static games were proved to globally converge to stationary Nash equilibria in two important classes of dynamic games (zero-sum and identical-interest discounted stochastic games). However, those decentralized algorithms need the players to know exactly the model (the transition probabilities and their payoffs at every stage). To overcome these strong assumptions, our paper introduces regularizations of the systems in (Leslie 2020; Baudin 2022) to construct a family of new decentralized learning algorithms which are model-free (players don't know the transitions and their payoffs are perturbed at every stage). Our procedures can be seen as extensions to stochastic games of the classical smooth fictitious play learning procedures in static games (where the players best responses are regularized, thanks to a smooth strictly concave perturbation of their payoff functions). We prove the convergence of our family of procedures to stationary regularized Nash equilibria in zero-sum and identical-interest discounted stochastic games. The proof uses the continuous smooth best-response dynamics counterparts, and stochastic approximation methods. When there is only one player, our problem is an instance of Reinforcement Learning and our procedures are proved to globally converge to the optimal stationary policy of the regularized MDP. In that sense, they can be seen as an alternative to the well known Q-learning procedure.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.