A User Manual for cuHALLaR: A GPU Accelerated Low-Rank Semidefinite Programming Solver (2508.15951v1)
Abstract: We present a Julia-based interface to the precompiled HALLaR and cuHALLaR binaries for large-scale semidefinite programs (SDPs). Both solvers are established as fast and numerically stable, and accept problem data in formats compatible with SDPA and a new enhanced data format taking advantage of Hybrid Sparse Low-Rank (HSLR) structure. The interface allows users to load custom data files, configure solver options, and execute experiments directly from Julia. A collection of example problems is included, including the SDP relaxations of the Matrix Completion and Maximum Stable Set problems.
Collections
Sign up for free to add this paper to one or more collections.