Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 434 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

Mini-Batch Robustness Verification of Deep Neural Networks (2508.15454v1)

Published 21 Aug 2025 in cs.LG, cs.LO, and cs.PL

Abstract: Neural network image classifiers are ubiquitous in many safety-critical applications. However, they are susceptible to adversarial attacks. To understand their robustness to attacks, many local robustness verifiers have been proposed to analyze $\epsilon$-balls of inputs. Yet, existing verifiers introduce a long analysis time or lose too much precision, making them less effective for a large set of inputs. In this work, we propose a new approach to local robustness: group local robustness verification. The key idea is to leverage the similarity of the network computations of certain $\epsilon$-balls to reduce the overall analysis time. We propose BaVerLy, a sound and complete verifier that boosts the local robustness verification of a set of $\epsilon$-balls by dynamically constructing and verifying mini-batches. BaVerLy adaptively identifies successful mini-batch sizes, accordingly constructs mini-batches of $\epsilon$-balls that have similar network computations, and verifies them jointly. If a mini-batch is verified, all $\epsilon$-balls are proven robust. Otherwise, one $\epsilon$-ball is suspected as not being robust, guiding the refinement. In the latter case, BaVerLy leverages the analysis results to expedite the analysis of that $\epsilon$-ball as well as the other $\epsilon$-balls in the batch. We evaluate BaVerLy on fully connected and convolutional networks for MNIST and CIFAR-10. Results show that BaVerLy scales the common one by one verification by 2.3x on average and up to 4.1x, in which case it reduces the total analysis time from 24 hours to 6 hours.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube