Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 35 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 439 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Twin-Boot: Uncertainty-Aware Optimization via Online Two-Sample Bootstrapping (2508.15019v1)

Published 20 Aug 2025 in cs.LG, cs.AI, stat.CO, and stat.ML

Abstract: Standard gradient descent methods yield point estimates with no measure of confidence. This limitation is acute in overparameterized and low-data regimes, where models have many parameters relative to available data and can easily overfit. Bootstrapping is a classical statistical framework for uncertainty estimation based on resampling, but naively applying it to deep learning is impractical: it requires training many replicas, produces post-hoc estimates that cannot guide learning, and implicitly assumes comparable optima across runs - an assumption that fails in non-convex landscapes. We introduce Twin-Bootstrap Gradient Descent (Twin-Boot), a resampling-based training procedure that integrates uncertainty estimation into optimization. Two identical models are trained in parallel on independent bootstrap samples, and a periodic mean-reset keeps both trajectories in the same basin so that their divergence reflects local (within-basin) uncertainty. During training, we use this estimate to sample weights in an adaptive, data-driven way, providing regularization that favors flatter solutions. In deep neural networks and complex high-dimensional inverse problems, the approach improves calibration and generalization and yields interpretable uncertainty maps.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets