Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Diverse Negative Sampling for Implicit Collaborative Filtering (2508.14468v1)

Published 20 Aug 2025 in cs.IR

Abstract: Implicit collaborative filtering recommenders are usually trained to learn user positive preferences. Negative sampling, which selects informative negative items to form negative training data, plays a crucial role in this process. Since items are often clustered in the latent space, existing negative sampling strategies normally oversample negative items from the dense regions. This leads to homogeneous negative data and limited model expressiveness. In this paper, we propose Diverse Negative Sampling (DivNS), a novel approach that explicitly accounts for diversity in negative training data during the negative sampling process. DivNS first finds hard negative items with large preference scores and constructs user-specific caches that store unused but highly informative negative samples. Then, its diversity-augmented sampler selects a diverse subset of negative items from the cache while ensuring dissimilarity from the user's hard negatives. Finally, a synthetic negatives generator combines the selected diverse negatives with hard negatives to form more effective training data. The resulting synthetic negatives are both informative and diverse, enabling recommenders to learn a broader item space and improve their generalisability. Extensive experiments on four public datasets demonstrate the effectiveness of DivNS in improving recommendation quality while maintaining computational efficiency.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube