Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

Comparing Model-agnostic Feature Selection Methods through Relative Efficiency (2508.14268v1)

Published 19 Aug 2025 in stat.ML, cs.LG, and stat.ME

Abstract: Feature selection and importance estimation in a model-agnostic setting is an ongoing challenge of significant interest. Wrapper methods are commonly used because they are typically model-agnostic, even though they are computationally intensive. In this paper, we focus on feature selection methods related to the Generalized Covariance Measure (GCM) and Leave-One-Covariate-Out (LOCO) estimation, and provide a comparison based on relative efficiency. In particular, we present a theoretical comparison under three model settings: linear models, non-linear additive models, and single index models that mimic a single-layer neural network. We complement this with extensive simulations and real data examples. Our theoretical results, along with empirical findings, demonstrate that GCM-related methods generally outperform LOCO under suitable regularity conditions. Furthermore, we quantify the asymptotic relative efficiency of these approaches. Our simulations and real data analysis include widely used machine learning methods such as neural networks and gradient boosting trees.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets