Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 227 tok/s Pro
2000 character limit reached

UniECS: Unified Multimodal E-Commerce Search Framework with Gated Cross-modal Fusion (2508.13843v1)

Published 19 Aug 2025 in cs.IR and cs.AI

Abstract: Current e-commerce multimodal retrieval systems face two key limitations: they optimize for specific tasks with fixed modality pairings, and lack comprehensive benchmarks for evaluating unified retrieval approaches. To address these challenges, we introduce UniECS, a unified multimodal e-commerce search framework that handles all retrieval scenarios across image, text, and their combinations. Our work makes three key contributions. First, we propose a flexible architecture with a novel gated multimodal encoder that uses adaptive fusion mechanisms. This encoder integrates different modality representations while handling missing modalities. Second, we develop a comprehensive training strategy to optimize learning. It combines cross-modal alignment loss (CMAL), cohesive local alignment loss (CLAL), intra-modal contrastive loss (IMCL), and adaptive loss weighting. Third, we create M-BEER, a carefully curated multimodal benchmark containing 50K product pairs for e-commerce search evaluation. Extensive experiments demonstrate that UniECS consistently outperforms existing methods across four e-commerce benchmarks with fine-tuning or zero-shot evaluation. On our M-BEER bench, UniECS achieves substantial improvements in cross-modal tasks (up to 28\% gain in R@10 for text-to-image retrieval) while maintaining parameter efficiency (0.2B parameters) compared to larger models like GME-Qwen2VL (2B) and MM-Embed (8B). Furthermore, we deploy UniECS in the e-commerce search platform of Kuaishou Inc. across two search scenarios, achieving notable improvements in Click-Through Rate (+2.74\%) and Revenue (+8.33\%). The comprehensive evaluation demonstrates the effectiveness of our approach in both experimental and real-world settings. Corresponding codes, models and datasets will be made publicly available at https://github.com/qzp2018/UniECS.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube