Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 TPS
Gemini 2.5 Pro 54 TPS Pro
GPT-5 Medium 23 TPS
GPT-5 High 33 TPS Pro
GPT-4o 99 TPS
GPT OSS 120B 452 TPS Pro
Kimi K2 213 TPS Pro
2000 character limit reached

ENCODE: Breaking the Trade-Off Between Performance and Efficiency in Long-Term User Behavior Modeling (2508.13567v1)

Published 19 Aug 2025 in cs.IR

Abstract: Long-term user behavior sequences are a goldmine for businesses to explore users' interests to improve Click-Through Rate. However, it is very challenging to accurately capture users' long-term interests from their long-term behavior sequences and give quick responses from the online serving systems. To meet such requirements, existing methods "inadvertently" destroy two basic requirements in long-term sequence modeling: R1) make full use of the entire sequence to keep the information as much as possible; R2) extract information from the most relevant behaviors to keep high relevance between learned interests and current target items. The performance of online serving systems is significantly affected by incomplete and inaccurate user interest information obtained by existing methods. To this end, we propose an efficient two-stage long-term sequence modeling approach, named as EfficieNt Clustering based twO-stage interest moDEling (ENCODE), consisting of offline extraction stage and online inference stage. It not only meets the aforementioned two basic requirements but also achieves a desirable balance between online service efficiency and precision. Specifically, in the offline extraction stage, ENCODE clusters the entire behavior sequence and extracts accurate interests. To reduce the overhead of the clustering process, we design a metric learning-based dimension reduction algorithm that preserves the relative pairwise distances of behaviors in the new feature space. While in the online inference stage, ENCODE takes the off-the-shelf user interests to predict the associations with target items. Besides, to further ensure the relevance between user interests and target items, we adopt the same relevance metric throughout the whole pipeline of ENCODE. The extensive experiment and comparison with SOTA have demonstrated the effectiveness and efficiency of our proposed ENCODE.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube