The Grorthendieck group of an extriangulated category (2508.12545v1)
Abstract: In this paper, we investigate the split Grothendieck group $K{\rm sp}{0}(\mathcal{M})$ of a $d$-rigid subcategory $\mathcal{M}$ in an extriangulated category $\mathscr{C}$. As applications, we prove the following results: (1) If $\mathcal{M}$ is a silting subcategory, then the Grothendieck group $K{0}(\mathscr{C})$ is isomorphic to $K_{0}{\rm sp}(\mathcal{M})$; (2) If $\mathcal{M}$ is a $d$-cluster tilting subcategory, then $K_{0}(\mathscr{C})$ is isomorphic to the index Grothendieck group $K_{0}{\rm in}(\mathcal{M})$; (3) Let $\mathcal{C}{A{n}}{d}$ be the $d$-cluster category of type $A_n$. If $d$ is even, then $K_0(\mathcal{C}{A{n}}{d})\cong \mathbb{Z}/(n+1)\mathbb{Z}$. If $d$ is odd, then $K_0(\mathcal{C}{A{n}}{d})\cong \mathbb{Z}$ if $n$ is odd; $K_0(\mathcal{C}{A{n}}{d})\cong 0$ if $n$ is even.
Collections
Sign up for free to add this paper to one or more collections.