Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

The Grorthendieck group of an extriangulated category (2508.12545v1)

Published 18 Aug 2025 in math.RT and math.CT

Abstract: In this paper, we investigate the split Grothendieck group $K{\rm sp}{0}(\mathcal{M})$ of a $d$-rigid subcategory $\mathcal{M}$ in an extriangulated category $\mathscr{C}$. As applications, we prove the following results: (1) If $\mathcal{M}$ is a silting subcategory, then the Grothendieck group $K{0}(\mathscr{C})$ is isomorphic to $K_{0}{\rm sp}(\mathcal{M})$; (2) If $\mathcal{M}$ is a $d$-cluster tilting subcategory, then $K_{0}(\mathscr{C})$ is isomorphic to the index Grothendieck group $K_{0}{\rm in}(\mathcal{M})$; (3) Let $\mathcal{C}{A{n}}{d}$ be the $d$-cluster category of type $A_n$. If $d$ is even, then $K_0(\mathcal{C}{A{n}}{d})\cong \mathbb{Z}/(n+1)\mathbb{Z}$. If $d$ is odd, then $K_0(\mathcal{C}{A{n}}{d})\cong \mathbb{Z}$ if $n$ is odd; $K_0(\mathcal{C}{A{n}}{d})\cong 0$ if $n$ is even.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com