Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
86 tokens/sec
DeepSeek R1 via Azure Premium
95 tokens/sec
GPT OSS 120B via Groq Premium
460 tokens/sec
Kimi K2 via Groq Premium
208 tokens/sec
2000 character limit reached

Navigating the Exploration-Exploitation Tradeoff in Inference-Time Scaling of Diffusion Models (2508.12361v1)

Published 17 Aug 2025 in cs.LG, cs.AI, math.ST, and stat.TH

Abstract: Inference-time scaling has achieved remarkable success in LLMs, yet its adaptation to diffusion models remains underexplored. We observe that the efficacy of recent Sequential Monte Carlo (SMC)-based methods largely stems from globally fitting the The reward-tilted distribution, which inherently preserves diversity during multi-modal search. However, current applications of SMC to diffusion models face a fundamental dilemma: early-stage noise samples offer high potential for improvement but are difficult to evaluate accurately, whereas late-stage samples can be reliably assessed but are largely irreversible. To address this exploration-exploitation trade-off, we approach the problem from the perspective of the search algorithm and propose two strategies: Funnel Schedule and Adaptive Temperature. These simple yet effective methods are tailored to the unique generation dynamics and phase-transition behavior of diffusion models. By progressively reducing the number of maintained particles and down-weighting the influence of early-stage rewards, our methods significantly enhance sample quality without increasing the total number of Noise Function Evaluations. Experimental results on multiple benchmarks and state-of-the-art text-to-image diffusion models demonstrate that our approach outperforms previous baselines.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube