Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 49 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Ergodicity bounds in the Sliced Wasserstein distance for Schur stable autoregressive processes (2508.12092v1)

Published 16 Aug 2025 in math.PR and math.DS

Abstract: Explicit calculations in dimension one show for Schur stable autoregressive processes with standard Gaussian noise that the ergodic convergence in the Wasserstein-$2$ distance is essentially given by the sum of the mean, which decays exponentially, and the standard deviation, which decays with twice the speed.This paper starts by showing new upper and lower multivariate affine transport bounds for the Wasserstein-$r$ distance for $r$ greater and equal to $1$. These bounds allow to formulate a sufficient (non-Gaussian) affine-ergodic-interpolation condition for the mentioned mean-variance behavior to take place in case of more general Schur stable multivariate autoregressive processes. All ergodic estimates are non-asymptotic with completely explicit constants. The main applications are precise thermalization bounds for Schur stable $\textsf{AR}(p)$ and $\textsf{ARMA}(p,q)$ models in Wasserstein and Sliced Wasserstein distance. In the sequel we establish with the help of coupling techniques explicit upper and lower exponential bounds for more general multivariate Schur stable autoregressive processes. This includes parallel sampling and the convergence of the empiricial means.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.