Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

Reduced-order modeling of Hamiltonian dynamics based on symplectic neural networks (2508.11911v1)

Published 16 Aug 2025 in math.NA, cs.LG, cs.NA, and physics.comp-ph

Abstract: We introduce a novel data-driven symplectic induced-order modeling (ROM) framework for high-dimensional Hamiltonian systems that unifies latent-space discovery and dynamics learning within a single, end-to-end neural architecture. The encoder-decoder is built from Henon neural networks (HenonNets) and may be augmented with linear SGS-reflector layers. This yields an exact symplectic map between full and latent phase spaces. Latent dynamics are advanced by a symplectic flow map implemented as a HenonNet. This unified neural architecture ensures exact preservation of the underlying symplectic structure at the reduced-order level, significantly enhancing the fidelity and long-term stability of the resulting ROM. We validate our method through comprehensive numerical experiments on canonical Hamiltonian systems. The results demonstrate the method's capability for accurate trajectory reconstruction, robust predictive performance beyond the training horizon, and accurate Hamiltonian preservation. These promising outcomes underscore the effectiveness and potential applicability of our symplectic ROM framework for complex dynamical systems across a broad range of scientific and engineering disciplines.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube