Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 191 tok/s Pro
2000 character limit reached

Diffusion is a code repair operator and generator (2508.11110v1)

Published 14 Aug 2025 in cs.SE, cs.AI, and cs.CL

Abstract: Code diffusion models generate code by iteratively removing noise from the latent representation of a code snippet. During later steps of the diffusion process, when the code snippet has almost converged, differences between discrete representations of these snippets look like last-mile repairs applied to broken or incomplete code. We evaluate the extent to which this resemblance can be exploited to leverage pre-trained code diffusion models for the problem of last-mile repair by considering two applications with significant potential. First, we can leverage the diffusion model for last-mile repair by adding noise to a broken code snippet and resuming the diffusion process. Second, we can leverage the diffusion model to generate arbitrary amount of training data for last-mile repair tasks (that are computationally more efficient) by sampling an intermediate program (input) and the final program (output) from the diffusion process. We perform experiments on 3 domains (Python, Excel and PowerShell) to evaluate applications, as well as analyze properties.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

alphaXiv