Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

An Iterative Algorithm for Differentially Private $k$-PCA with Adaptive Noise (2508.10879v1)

Published 14 Aug 2025 in stat.ML, cs.CR, cs.IT, cs.LG, math.IT, math.ST, and stat.TH

Abstract: Given $n$ i.i.d. random matrices $A_i \in \mathbb{R}{d \times d}$ that share a common expectation $\Sigma$, the objective of Differentially Private Stochastic PCA is to identify a subspace of dimension $k$ that captures the largest variance directions of $\Sigma$, while preserving differential privacy (DP) of each individual $A_i$. Existing methods either (i) require the sample size $n$ to scale super-linearly with dimension $d$, even under Gaussian assumptions on the $A_i$, or (ii) introduce excessive noise for DP even when the intrinsic randomness within $A_i$ is small. Liu et al. (2022a) addressed these issues for sub-Gaussian data but only for estimating the top eigenvector ($k=1$) using their algorithm DP-PCA. We propose the first algorithm capable of estimating the top $k$ eigenvectors for arbitrary $k \leq d$, whilst overcoming both limitations above. For $k=1$ our algorithm matches the utility guarantees of DP-PCA, achieving near-optimal statistical error even when $n = \tilde{!O}(d)$. We further provide a lower bound for general $k > 1$, matching our upper bound up to a factor of $k$, and experimentally demonstrate the advantages of our algorithm over comparable baselines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets