Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
27 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
87 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
465 tokens/sec
Kimi K2 via Groq Premium
226 tokens/sec
2000 character limit reached

Dimension-Free Bounds for Generalized First-Order Methods via Gaussian Coupling (2508.10782v1)

Published 14 Aug 2025 in stat.ML, math.PR, math.ST, and stat.TH

Abstract: We establish non-asymptotic bounds on the finite-sample behavior of generalized first-order iterative algorithms -- including gradient-based optimization methods and approximate message passing (AMP) -- with Gaussian data matrices and full-memory, non-separable nonlinearities. The central result constructs an explicit coupling between the iterates of a generalized first-order method and a conditionally Gaussian process whose covariance evolves deterministically via a finite-dimensional state evolution recursion. This coupling yields tight, dimension-free bounds under mild Lipschitz and moment-matching conditions. Our analysis departs from classical inductive AMP proofs by employing a direct comparison between the generalized first-order method and the conditionally Gaussian comparison process. This approach provides a unified derivation of AMP theory for Gaussian matrices without relying on separability or asymptotics. A complementary lower bound on the Wasserstein distance demonstrates the sharpness of our upper bounds.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to a collection.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube