Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

A Guide to Bayesian Optimization in Bioprocess Engineering (2508.10642v1)

Published 14 Aug 2025 in q-bio.OT and stat.ML

Abstract: Bayesian optimization has become widely popular across various experimental sciences due to its favorable attributes: it can handle noisy data, perform well with relatively small datasets, and provide adaptive suggestions for sequential experimentation. While still in its infancy, Bayesian optimization has recently gained traction in bioprocess engineering. However, experimentation with biological systems is highly complex and the resulting experimental uncertainty requires specific extensions to classical Bayesian optimization. Moreover, current literature often targets readers with a strong statistical background, limiting its accessibility for practitioners. In light of these developments, this review has two aims: first, to provide an intuitive and practical introduction to Bayesian optimization; and second, to outline promising application areas and open algorithmic challenges, thereby highlighting opportunities for future research in machine learning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube