Improving and Evaluating Open Deep Research Agents (2508.10152v1)
Abstract: We focus here on Deep Research Agents (DRAs), which are systems that can take a natural language prompt from a user, and then autonomously search for, and utilize, internet-based content to address the prompt. Recent DRAs have demonstrated impressive capabilities on public benchmarks however, recent research largely involves proprietary closed-source systems. At the time of this work, we only found one open-source DRA, termed Open Deep Research (ODR). In this work we adapt the challenging recent BrowseComp benchmark to compare ODR to existing proprietary systems. We propose BrowseComp-Small (BC-Small), comprising a subset of BrowseComp, as a more computationally-tractable DRA benchmark for academic labs. We benchmark ODR and two other proprietary systems on BC-Small: one system from Anthropic and one system from Google. We find that all three systems achieve 0% accuracy on the test set of 60 questions. We introduce three strategic improvements to ODR, resulting in the ODR+ model, which achieves a state-of-the-art 10% success rate on BC-Small among both closed-source and open-source systems. We report ablation studies indicating that all three of our improvements contributed to the success of ODR+.
Collections
Sign up for free to add this paper to one or more collections.