Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 113 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Distributional Robustness in Output Feedback Regret-Optimal Control (2508.10150v1)

Published 13 Aug 2025 in math.OC, cs.SY, and eess.SY

Abstract: This paper studies distributionally robust regret-optimal (DRRO) control with purified output feedback for linear systems subject to additive disturbances and measurement noise. These uncertainties (including the initial system state) are assumed to be stochastic and distributed according to an unknown joint probability distribution within a Wasserstein ambiguity set. We design affine controllers to minimise the worst-case expected regret over all distributions in this set. The expected regret is defined as the difference between an expected cost incurred by an affine causal controller and the expected cost incurred by the optimal noncausal controller with perfect knowledge of the disturbance trajectory at the outset. Leveraging the duality theory in distributionally robust optimisation, we derive strong duality results for worst-case expectation problems involving general quadratic objective functions, enabling exact reformulations of the DRRO control problem as semidefinite programs (SDPs). Focusing on one such reformulation, we eliminate certain decision variables. This technique also permits a further equivalent reformulation of the SDP as a distributed optimisation problem, with potential to enhance scalability.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube