PREF: Reference-Free Evaluation of Personalised Text Generation in LLMs (2508.10028v1)
Abstract: Personalised text generation is essential for user-centric information systems, yet most evaluation methods overlook the individuality of users. We introduce \textbf{PREF}, a \textbf{P}ersonalised \textbf{R}eference-free \textbf{E}valuation \textbf{F}ramework that jointly measures general output quality and user-specific alignment without requiring gold personalised references. PREF operates in a three-step pipeline: (1) a coverage stage uses a LLM to generate a comprehensive, query-specific guideline covering universal criteria such as factuality, coherence, and completeness; (2) a preference stage re-ranks and selectively augments these factors using the target user's profile, stated or inferred preferences, and context, producing a personalised evaluation rubric; and (3) a scoring stage applies an LLM judge to rate candidate answers against this rubric, ensuring baseline adequacy while capturing subjective priorities. This separation of coverage from preference improves robustness, transparency, and reusability, and allows smaller models to approximate the personalised quality of larger ones. Experiments on the PrefEval benchmark, including implicit preference-following tasks, show that PREF achieves higher accuracy, better calibration, and closer alignment with human judgments than strong baselines. By enabling scalable, interpretable, and user-aligned evaluation, PREF lays the groundwork for more reliable assessment and development of personalised language generation systems.
Collections
Sign up for free to add this paper to one or more collections.