Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 45 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 206 tok/s Pro
2000 character limit reached

Real-time deep learning phase imaging flow cytometer reveals blood cell aggregate biomarkers for haematology diagnostics (2508.09215v1)

Published 11 Aug 2025 in q-bio.QM, cs.AI, cs.CV, cs.LG, and eess.IV

Abstract: While analysing rare blood cell aggregates remains challenging in automated haematology, they could markedly advance label-free functional diagnostics. Conventional flow cytometers efficiently perform cell counting with leukocyte differentials but fail to identify aggregates with flagged results, requiring manual reviews. Quantitative phase imaging flow cytometry captures detailed aggregate morphologies, but clinical use is hampered by massive data storage and offline processing. Incorporating hidden biomarkers into routine haematology panels would significantly improve diagnostics without flagged results. We present RT-HAD, an end-to-end deep learning-based image and data processing framework for off-axis digital holographic microscopy (DHM), which combines physics-consistent holographic reconstruction and detection, representing each blood cell in a graph to recognize aggregates. RT-HAD processes >30 GB of image data on-the-fly with turnaround time of <1.5 min and error rate of 8.9% in platelet aggregate detection, which matches acceptable laboratory error rates of haematology biomarkers and solves the big data challenge for point-of-care diagnostics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com