The First Differentiable Transfer-Based Algorithm for Discrete MicroLED Repair (2508.09206v1)
Abstract: Laser-enabled selective transfer, a key process in high-throughput microLED fabrication, requires computational models that can plan shift sequences to minimize motion of XY stages and adapt to varying optimization objectives across the substrate. We propose the first repair algorithm based on a differentiable transfer module designed to model discrete shifts of transfer platforms, while remaining trainable via gradient-based optimization. Compared to local proximity searching algorithms, our approach achieves superior repair performance and enables more flexible objective designs, such as minimizing the number of steps. Unlike reinforcement learning (RL)-based approaches, our method eliminates the need for handcrafted feature extractors and trains significantly faster, allowing scalability to large arrays. Experiments show a 50% reduction in transfer steps and sub-2-minute planning time on 2000x2000 arrays. This method provides a practical and adaptable solution for accelerating microLED repair in AR/VR and next-generation display fabrication.