Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

CP-Agent: Agentic Constraint Programming (2508.07468v1)

Published 10 Aug 2025 in cs.AI, cs.CL, cs.LG, and cs.SE

Abstract: Translating natural language problem descriptions into formal constraint models remains a fundamental challenge in constraint programming, requiring deep expertise in both the problem domain and modeling frameworks. Previous approaches to automating this translation have employed fixed workflows with predetermined modeling steps, failing on a significant number of benchmark problems. We present a new approach using a pure agentic strategy without any fixed pipeline. We developed a general-purpose Python coding agent based on the ReAct (Reason and Act) principle, utilizing a persistent IPython kernel for stateful code execution and iterative development. Rather than embedding constraint programming logic into the agent architecture, domain-specific expertise is injected solely through a carefully crafted project prompt. The agent combines this prompt-encoded knowledge with access to file operations and code execution tools, enabling it to test hypotheses, debug failures, and verify solutions dynamically. Implemented in just a few hundred lines of code, this architecture successfully solves all 101 problems of the CP-Bench constraint programming benchmark set. The results suggest that constraint modeling tasks require the combination of general coding tools and domain expertise encoded in prompts, rather than specialized agent architectures or predefined workflows.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Youtube Logo Streamline Icon: https://streamlinehq.com

alphaXiv

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube