Optimal Representation for Right-to-Left Parallel Scalar Point Multiplication (2508.07310v1)
Abstract: This paper introduces an optimal representation for a right-to-left parallel elliptic curve scalar point multiplication. The right-to-left approach is easier to parallelize than the conventional left-to-right approach. However, unlike the left-to-right approach, there is still no work considering number representations for the right-to-left parallel calculation. By simplifying the implementation by Robert, we devise a mathematical model to capture the computation time of the calculation. Then, for any arbitrary amount of doubling time and addition time, we propose algorithms to generate representations which minimize the time in that model. As a result, we can show a negative result that a conventional representation like NAF is almost optimal. The parallel computation time obtained from any representation cannot be better than NAF by more than 1%.
Collections
Sign up for free to add this paper to one or more collections.