Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 218 tok/s Pro
2000 character limit reached

The Beauty of Anisotropic Mesh Refinement: Omnitrees for Efficient Dyadic Discretizations (2508.06316v1)

Published 8 Aug 2025 in cs.DS, cs.CG, cs.GR, cs.IT, cs.NA, math.IT, and math.NA

Abstract: Structured adaptive mesh refinement (AMR), commonly implemented via quadtrees and octrees, underpins a wide range of applications including databases, computer graphics, physics simulations, and machine learning. However, octrees enforce isotropic refinement in regions of interest, which can be especially inefficient for problems that are intrinsically anisotropic--much resolution is spent where little information is gained. This paper presents omnitrees as an anisotropic generalization of octrees and related data structures. Omnitrees allow to refine only the locally most important dimensions, providing tree structures that are less deep than bintrees and less wide than octrees. As a result, the convergence of the AMR schemes can be increased by up to a factor of the dimensionality d for very anisotropic problems, quickly offsetting their modest increase in storage overhead. We validate this finding on the problem of binary shape representation across 4,166 three-dimensional objects: Omnitrees increase the mean convergence rate by 1.5x, require less storage to achieve equivalent error bounds, and maximize the information density of the stored function faster than octrees. These advantages are projected to be even stronger for higher-dimensional problems. We provide a first validation by introducing a time-dependent rotation to create four-dimensional representations, and discuss the properties of their 4-d octree and omnitree approximations. Overall, omnitree discretizations can make existing AMR approaches more efficient, and open up new possibilities for high-dimensional applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com