Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 223 tok/s Pro
2000 character limit reached

A 66-Gb/s/5.5-W RISC-V Many-Core Cluster for 5G+ Software-Defined Radio Uplinks (2508.06176v1)

Published 8 Aug 2025 in eess.SP

Abstract: Following the scale-up of new radio (NR) complexity in 5G and beyond, the physical layer's computing load on base stations is increasing under a strictly constrained latency and power budget; base stations must process > 20-Gb/s uplink wireless data rate on the fly, in < 10 W. At the same time, the programmability and reconfigurability of base station components are the key requirements; it reduces the time and cost of new networks' deployment, it lowers the acceptance threshold for industry players to enter the market, and it ensures return on investments in a fast-paced evolution of standards. In this article, we present the design of a many-core cluster for 5G and beyond base station processing. Our design features 1024, streamlined RISC-V cores with domain-specific FP extensions, and 4-MiB shared memory. It provides the necessary computational capabilities for software-defined processing of the lower physical layer of 5G physical uplink shared channel (PUSCH), satisfying high-end throughput requirements (66 Gb/s for a transition time interval (TTI), 9.4-302 Gb/s depending on the processing stage). The throughput metrics for the implemented functions are ten times higher than in state-of-the-art (SoTA) application-specific instruction processors (ASIPs). The energy efficiency on key NR kernels (2-41 Gb/s/W), measured at 800 MHz, 25 {\deg}C, and 0.8 V, on a placed and routed instance in 12-nm CMOS technology, is competitive with SoTA architectures. The PUSCH processing runs end-to-end on a single cluster in 1.7 ms, at <6-W average power consumption, achieving 12 Gb/s/W.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube