Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Breaking the Top-$K$ Barrier: Advancing Top-$K$ Ranking Metrics Optimization in Recommender Systems (2508.05673v1)

Published 4 Aug 2025 in cs.IR, cs.AI, and cs.LG

Abstract: In the realm of recommender systems (RS), Top-$K$ ranking metrics such as NDCG@$K$ are the gold standard for evaluating recommendation performance. However, during the training of recommendation models, optimizing NDCG@$K$ poses significant challenges due to its inherent discontinuous nature and the intricate Top-$K$ truncation. Recent efforts to optimize NDCG@$K$ have either overlooked the Top-$K$ truncation or suffered from high computational costs and training instability. To overcome these limitations, we propose SoftmaxLoss@$K$ (SL@$K$), a novel recommendation loss tailored for NDCG@$K$ optimization. Specifically, we integrate the quantile technique to handle Top-$K$ truncation and derive a smooth upper bound for optimizing NDCG@$K$ to address discontinuity. The resulting SL@$K$ loss has several desirable properties, including theoretical guarantees, ease of implementation, computational efficiency, gradient stability, and noise robustness. Extensive experiments on four real-world datasets and three recommendation backbones demonstrate that SL@$K$ outperforms existing losses with a notable average improvement of 6.03%. The code is available at https://github.com/Tiny-Snow/IR-Benchmark.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube