Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
107 tokens/sec
Gemini 2.5 Pro Premium
58 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
84 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Exact and Heuristic Algorithms for Constrained Biclustering (2508.05493v1)

Published 7 Aug 2025 in math.OC and cs.LG

Abstract: Biclustering, also known as co-clustering or two-way clustering, simultaneously partitions the rows and columns of a data matrix to reveal submatrices with coherent patterns. Incorporating background knowledge into clustering to enhance solution quality and interpretability has attracted growing interest in mathematical optimization and machine learning research. Extending this paradigm to biclustering enables prior information to guide the joint grouping of rows and columns. We study constrained biclustering with pairwise constraints, namely must-link and cannot-link constraints, which specify whether objects should belong to the same or different biclusters. As a model problem, we address the constrained version of the k-densest disjoint biclique problem, which aims to identify k disjoint complete bipartite subgraphs (called bicliques) in a weighted complete bipartite graph, maximizing the total density while satisfying pairwise constraints. We propose both exact and heuristic algorithms. The exact approach is a tailored branch-and-cut algorithm based on a low-dimensional semidefinite programming (SDP) relaxation, strengthened with valid inequalities and solved in a cutting-plane fashion. Exploiting integer programming tools, a rounding scheme converts SDP solutions into feasible biclusterings at each node. For large-scale instances, we introduce an efficient heuristic based on the low-rank factorization of the SDP. The resulting nonlinear optimization problem is tackled with an augmented Lagrangian method, where the subproblem is solved by decomposition through a block-coordinate projected gradient algorithm. Extensive experiments on synthetic and real-world datasets show that the exact method significantly outperforms general-purpose solvers, while the heuristic achieves high-quality solutions efficiently on large instances.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube