Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
32 tokens/sec
GPT-4o
87 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
435 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

Parabolic abstract evolution equations in cylindrical domains and uniformly local Sobolev spaces (2508.05220v1)

Published 7 Aug 2025 in math.AP

Abstract: In this article, we consider parabolic equations of the type $$\partial_t u(x,t)=\Delta u(x,t) - Bu(x,t) + F(u(x,t))$$ where $u$ is valued in a transverse Hilbert space $Y$ and $B$ is a positive self-adjoint operator on $Y$, allowing a different diffusion mechanism in the transverse direction. We aim at considering solutions with infinite energy and we study the Cauchy problem in the uniformly local spaces associated with the norm $$|u|{L2{\text{ul}}(\mathbb{R},Y)}= \sup_{a\in\mathbb{R}d} |u(x)|{L2(B(a,1),Y)}.$$ For the classical parabolic equation, i.e. if $Y=\mathbb{R}$, it is known that the Cauchy problem is ill-posed in the weak version of the uniformly local spaces but well-posed in a stronger version, where additional uniform continuity is required. In this paper, we show that the linear operator $\partial2{xx} - B$ is not necessarily a sectorial operator in any version of the uniformly local Lebesgue space, due to the possible non-density of its domain. Then, we use the theory of parabolic abstract evolution equations to set a well-posed Cauchy problem, even in the weak version of the uniformly local space. In particular, we believe that this paper offers a new perspective on the comparison between both versions of the uniformly local spaces and also provides a new natural example of differential operators with non-dense domain.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to a collection.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube