Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Causal Reward Adjustment: Mitigating Reward Hacking in External Reasoning via Backdoor Correction (2508.04216v1)

Published 6 Aug 2025 in cs.LG

Abstract: External reasoning systems combine LLMs with process reward models (PRMs) to select high-quality reasoning paths for complex tasks such as mathematical problem solving. However, these systems are prone to reward hacking, where high-scoring but logically incorrect paths are assigned high scores by the PRMs, leading to incorrect answers. From a causal inference perspective, we attribute this phenomenon primarily to the presence of confounding semantic features. To address it, we propose Causal Reward Adjustment (CRA), a method that mitigates reward hacking by estimating the true reward of a reasoning path. CRA trains sparse autoencoders on the PRM's internal activations to recover interpretable features, then corrects confounding by using backdoor adjustment. Experiments on math solving datasets demonstrate that CRA mitigates reward hacking and improves final accuracy, without modifying the policy model or retraining PRM.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.