Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
Gemini 2.5 Pro Premium
53 tokens/sec
GPT-5 Medium
35 tokens/sec
GPT-5 High Premium
37 tokens/sec
GPT-4o
117 tokens/sec
DeepSeek R1 via Azure Premium
90 tokens/sec
GPT OSS 120B via Groq Premium
465 tokens/sec
Kimi K2 via Groq Premium
203 tokens/sec
2000 character limit reached

Enhancing Serendipity Recommendation System by Constructing Dynamic User Knowledge Graphs with Large Language Models (2508.04032v1)

Published 6 Aug 2025 in cs.IR and cs.AI

Abstract: The feedback loop in industrial recommendation systems reinforces homogeneous content, creates filter bubble effects, and diminishes user satisfaction. Recently, LLMs(LLMs) have demonstrated potential in serendipity recommendation, thanks to their extensive world knowledge and superior reasoning capabilities. However, these models still face challenges in ensuring the rationality of the reasoning process, the usefulness of the reasoning results, and meeting the latency requirements of industrial recommendation systems (RSs). To address these challenges, we propose a method that leverages LLM to dynamically construct user knowledge graphs, thereby enhancing the serendipity of recommendation systems. This method comprises a two stage framework:(1) two-hop interest reasoning, where user static profiles and historical behaviors are utilized to dynamically construct user knowledge graphs via LLM. Two-hop reasoning, which can enhance the quality and accuracy of LLM reasoning results, is then performed on the constructed graphs to identify users' potential interests; and(2) Near-line adaptation, a cost-effective approach to deploying the aforementioned models in industrial recommendation systems. We propose a u2i (user-to-item) retrieval model that also incorporates i2i (item-to-item) retrieval capabilities, the retrieved items not only exhibit strong relevance to users' newly emerged interests but also retain the high conversion rate of traditional u2i retrieval. Our online experiments on the Dewu app, which has tens of millions of users, indicate that the method increased the exposure novelty rate by 4.62%, the click novelty rate by 4.85%, the average view duration per person by 0.15%, unique visitor click through rate by 0.07%, and unique visitor interaction penetration by 0.30%, enhancing user experience.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube