Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Cross-Model Semantics in Representation Learning (2508.03649v1)

Published 5 Aug 2025 in cs.LG and cs.AI

Abstract: The internal representations learned by deep networks are often sensitive to architecture-specific choices, raising questions about the stability, alignment, and transferability of learned structure across models. In this paper, we investigate how structural constraints--such as linear shaping operators and corrective paths--affect the compatibility of internal representations across different architectures. Building on the insights from prior studies on structured transformations and convergence, we develop a framework for measuring and analyzing representational alignment across networks with distinct but related architectural priors. Through a combination of theoretical insights, empirical probes, and controlled transfer experiments, we demonstrate that structural regularities induce representational geometry that is more stable under architectural variation. This suggests that certain forms of inductive bias not only support generalization within a model, but also improve the interoperability of learned features across models. We conclude with a discussion on the implications of representational transferability for model distillation, modular learning, and the principled design of robust learning systems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube