Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
42 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
86 tokens/sec
GPT OSS 120B via Groq Premium
464 tokens/sec
Kimi K2 via Groq Premium
181 tokens/sec
2000 character limit reached

Adaptive Data-Borrowing for Improving Treatment Effect Estimation using External Controls (2508.03282v1)

Published 5 Aug 2025 in stat.ME

Abstract: Randomized controlled trials (RCTs) often exhibit limited inferential efficiency in estimating treatment effects due to small sample sizes. In recent years, the combination of external controls has gained increasing attention as a means of improving the efficiency of RCTs. However, external controls are not always comparable to RCTs, and direct borrowing without careful evaluation can introduce substantial bias and reduce the efficiency of treatment effect estimation. In this paper, we propose a novel influence-based adaptive sample borrowing approach that effectively quantifies the "comparability'' of each sample in the external controls using influence function theory. Given a selected set of borrowed external controls, we further derive a semiparametric efficient estimator under an exchangeability assumption. Recognizing that the exchangeability assumption may not hold for all possible borrowing sets, we conduct a detailed analysis of the asymptotic bias and variance of the proposed estimator under violations of exchangeability. Building on this bias-variance trade-off, we further develop a data-driven approach to select the optimal subset of external controls for borrowing. Extensive simulations and real-world applications demonstrate that the proposed approach significantly enhances treatment effect estimation efficiency in RCTs, outperforming existing approaches.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.