Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

The alpha-beta divergence for real and complex data (2508.03272v1)

Published 5 Aug 2025 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Divergences are fundamental to the information criteria that underpin most signal processing algorithms. The alpha-beta family of divergences, designed for non-negative data, offers a versatile framework that parameterizes and continuously interpolates several separable divergences found in existing literature. This work extends the definition of alpha-beta divergences to accommodate complex data, specifically when the arguments of the divergence are complex vectors. This novel formulation is designed in such a way that, by setting the divergence hyperparameters to unity, it particularizes to the well-known Euclidean and Mahalanobis squared distances. Other choices of hyperparameters yield practical separable and non-separable extensions of several classical divergences. In the context of the problem of approximating a complex random vector, the centroid obtained by optimizing the alpha-beta mean distortion has a closed-form expression, which interpretation sheds light on the distinct roles of the divergence hyperparameters. These contributions may have wide potential applicability, as there are many signal processing domains in which the underlying data are inherently complex.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

alphaXiv