Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
91 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
464 tokens/sec
Kimi K2 via Groq Premium
248 tokens/sec
2000 character limit reached

Kernel ridge regression based sound field estimation using a rigid spherical microphone array (2508.03087v1)

Published 5 Aug 2025 in eess.AS

Abstract: We propose a sound field estimation method based on kernel ridge regression using a rigid spherical microphone array. Kernel ridge regression with physically constrained kernel functions, and further with kernel functions adapted to observed sound fields, have proven to be powerful tools. However, such methods generally assume an open-sphere microphone array configuration, i.e., no scatterers exist within the observation or estimation region. Alternatively, some approaches assume the presence of scatterers and attempt to eliminate their influence through a least-squares formulation. Even then, these methods typically do not incorporate the boundary conditions of the scatterers, which are not presumed to be known. In contrast, we exploit the fact the scatterer here is a rigid sphere. Meaning, both the virtual scattering source locations and the boundary conditions are well-defined. Based on this, we formulate the scattered sound field within the kernel ridge regression framework and propose a novel sound field representation incorporating a boundary constraint. The effectiveness of the proposed method is demonstrated through numerical simulations and real-world experiments using a newly developed spherical microphone array.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube