Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
90 tokens/sec
Gemini 2.5 Pro Premium
54 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
78 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
225 tokens/sec
2000 character limit reached

D2PPO: Diffusion Policy Policy Optimization with Dispersive Loss (2508.02644v1)

Published 4 Aug 2025 in cs.AI

Abstract: Diffusion policies excel at robotic manipulation by naturally modeling multimodal action distributions in high-dimensional spaces. Nevertheless, diffusion policies suffer from diffusion representation collapse: semantically similar observations are mapped to indistinguishable features, ultimately impairing their ability to handle subtle but critical variations required for complex robotic manipulation. To address this problem, we propose D2PPO (Diffusion Policy Policy Optimization with Dispersive Loss). D2PPO introduces dispersive loss regularization that combats representation collapse by treating all hidden representations within each batch as negative pairs. D2PPO compels the network to learn discriminative representations of similar observations, thereby enabling the policy to identify subtle yet crucial differences necessary for precise manipulation. In evaluation, we find that early-layer regularization benefits simple tasks, while late-layer regularization sharply enhances performance on complex manipulation tasks. On RoboMimic benchmarks, D2PPO achieves an average improvement of 22.7% in pre-training and 26.1% after fine-tuning, setting new SOTA results. In comparison with SOTA, results of real-world experiments on a Franka Emika Panda robot show the excitingly high success rate of our method. The superiority of our method is especially evident in complex tasks. Project page: https://guowei-zou.github.io/d2ppo/

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube