Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

Diffusion-based 3D Hand Motion Recovery with Intuitive Physics (2508.01835v1)

Published 3 Aug 2025 in cs.CV

Abstract: While 3D hand reconstruction from monocular images has made significant progress, generating accurate and temporally coherent motion estimates from videos remains challenging, particularly during hand-object interactions. In this paper, we present a novel 3D hand motion recovery framework that enhances image-based reconstructions through a diffusion-based and physics-augmented motion refinement model. Our model captures the distribution of refined motion estimates conditioned on initial ones, generating improved sequences through an iterative denoising process. Instead of relying on scarce annotated video data, we train our model only using motion capture data without images. We identify valuable intuitive physics knowledge during hand-object interactions, including key motion states and their associated motion constraints. We effectively integrate these physical insights into our diffusion model to improve its performance. Extensive experiments demonstrate that our approach significantly improves various frame-wise reconstruction methods, achieving state-of-the-art (SOTA) performance on existing benchmarks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com