Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

The Bidirectional Process Reward Model (2508.01682v1)

Published 3 Aug 2025 in cs.CL

Abstract: Process Reward Models (PRMs) have emerged as a promising approach to enhance the reasoning quality of LLMs by assigning fine-grained scores to intermediate reasoning steps within a solution trajectory. However, existing PRMs predominantly adopt a unidirectional left-to-right (L2R) evaluation paradigm, which limits their ability to leverage global context, making it challenging to verify the consistency of earlier steps based on later ones. In light of these challenges, we propose a novel bidirectional evaluation paradigm, named Bidirectional Process Reward Model (BiPRM). BiPRM seamlessly incorporates a parallel right-to-left (R2L) evaluation stream alongside the conventional L2R flow, enabling later reasoning steps to help assess earlier ones in real time. Notably, the built-in R2L evaluation is implemented solely through prompt modifications that reverse the original reasoning trajectory, without any additional parameters or inference latency introduced. This ensures BiPRM remains both efficient and broadly compatible with existing PRM studies. We conduct extensive experiments on two mathematical reasoning benchmarks using samples generated by three different policy models. Our method, BiPRM, is evaluated across three backbones and three distinct PRM objectives. Across all settings, BiPRM consistently outperforms unidirectional baselines, achieving up to a 31.9% improvement in stepwise reward evaluation. Generally, our results highlight BiPRM's effectiveness, robustness, and general applicability, offering a promising new direction for process-based reward modeling.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.