Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 454 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Rate-distortion Optimized Point Cloud Preprocessing for Geometry-based Point Cloud Compression (2508.01633v1)

Published 3 Aug 2025 in cs.CV and eess.IV

Abstract: Geometry-based point cloud compression (G-PCC), an international standard designed by MPEG, provides a generic framework for compressing diverse types of point clouds while ensuring interoperability across applications and devices. However, G-PCC underperforms compared to recent deep learning-based PCC methods despite its lower computational power consumption. To enhance the efficiency of G-PCC without sacrificing its interoperability or computational flexibility, we propose a novel preprocessing framework that integrates a compression-oriented voxelization network with a differentiable G-PCC surrogate model, jointly optimized in the training phase. The surrogate model mimics the rate-distortion behaviour of the non-differentiable G-PCC codec, enabling end-to-end gradient propagation. The versatile voxelization network adaptively transforms input point clouds using learning-based voxelization and effectively manipulates point clouds via global scaling, fine-grained pruning, and point-level editing for rate-distortion trade-offs. During inference, only the lightweight voxelization network is appended to the G-PCC encoder, requiring no modifications to the decoder, thus introducing no computational overhead for end users. Extensive experiments demonstrate a 38.84% average BD-rate reduction over G-PCC. By bridging classical codecs with deep learning, this work offers a practical pathway to enhance legacy compression standards while preserving their backward compatibility, making it ideal for real-world deployment.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube