RepoForge: Training a SOTA Fast-thinking SWE Agent with an End-to-End Data Curation Pipeline Synergizing SFT and RL at Scale (2508.01550v1)
Abstract: Training software engineering (SWE) LLMs is bottlenecked by expensive infrastructure, inefficient evaluation pipelines, scarce training data, and costly quality control. We present RepoForge, an autonomous, end-to-end pipeline that generates, evaluates, and trains SWE agents at scale. Our key contributions include: (1) RepoForge-8B-Agent, achieving 17.4\% on SWE-Bench-Verified~\citep{swebench_verified2024}, establishing new state-of-the-art for $\leq$8B non-thinking LLMs; (2) 7,304 executable environments auto-generated from real GitHub commits with zero manual intervention; (3) 14$\times$ storage reduction (1.4GB $\rightarrow$ 102MB per instance) via intelligent dependency management and image pruning; (4) $>$70\% faster evaluation using a Ray-powered~\citep{ray2018} distributed RepoForge harness; (5) 19,000$\times$ cheaper labeling through our automated SPICE~\citep{spice2024} difficulty assessment technique. By unifying storage-efficient sandboxing, Ray-powered evaluation harness, automated data generation, SPICE-based labeling, and bubble-free RL scaffold, we demonstrate that even $\leq$8B models can reach new state-of-the-art performance on demanding benchmarks like SWE-Bench-Verified. Our approach addresses critical bottlenecks in SWE agent training: high storage costs of container-based evaluation, inefficient sequential reward pipelines, limited availability of high-quality training data, expensive manual labeling, and multi-turn RL pipeline bottlenecks.