Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

Flow IV: Counterfactual Inference In Nonseparable Outcome Models Using Instrumental Variables (2508.01321v1)

Published 2 Aug 2025 in stat.ML and cs.LG

Abstract: To reach human level intelligence, learning algorithms need to incorporate causal reasoning. But identifying causality, and particularly counterfactual reasoning, remains an elusive task. In this paper, we make progress on this task by utilizing instrumental variables (IVs). IVs are a classic tool for mitigating bias from unobserved confounders when estimating causal effects. While IV methods have been extended to non-separable structural models at the population level, existing approaches to counterfactual prediction typically assume additive noise in the outcome. In this paper, we show that under standard IV assumptions, along with the assumptions that latent noises in treatment and outcome are strictly monotonic and jointly Gaussian, the treatment-outcome relationship becomes uniquely identifiable from observed data. This enables counterfactual inference even in nonseparable models. We implement our approach by training a normalizing flow to maximize the likelihood of the observed data, demonstrating accurate recovery of the underlying outcome function. We call our method Flow IV.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets