Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 463 tok/s Pro
Kimi K2 213 tok/s Pro
2000 character limit reached

Enhancing Diffusion-based Dataset Distillation via Adversary-Guided Curriculum Sampling (2508.01264v1)

Published 2 Aug 2025 in cs.CV

Abstract: Dataset distillation aims to encapsulate the rich information contained in dataset into a compact distilled dataset but it faces performance degradation as the image-per-class (IPC) setting or image resolution grows larger. Recent advancements demonstrate that integrating diffusion generative models can effectively facilitate the compression of large-scale datasets while maintaining efficiency due to their superiority in matching data distribution and summarizing representative patterns. However, images sampled from diffusion models are always blamed for lack of diversity which may lead to information redundancy when multiple independent sampled images are aggregated as a distilled dataset. To address this issue, we propose Adversary-guided Curriculum Sampling (ACS), which partitions the distilled dataset into multiple curricula. For generating each curriculum, ACS guides diffusion sampling process by an adversarial loss to challenge a discriminator trained on sampled images, thus mitigating information overlap between curricula and fostering a more diverse distilled dataset. Additionally, as the discriminator evolves with the progression of curricula, ACS generates images from simpler to more complex, ensuring efficient and systematic coverage of target data informational spectrum. Extensive experiments demonstrate the effectiveness of ACS, which achieves substantial improvements of 4.1\% on Imagewoof and 2.1\% on ImageNet-1k over the state-of-the-art.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube