Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Learning the action for long-time-step simulations of molecular dynamics (2508.01068v1)

Published 1 Aug 2025 in physics.chem-ph, cond-mat.mtrl-sci, and stat.ML

Abstract: The equations of classical mechanics can be used to model the time evolution of countless physical systems, from the astrophysical to the atomic scale. Accurate numerical integration requires small time steps, which limits the computational efficiency -- especially in cases such as molecular dynamics that span wildly different time scales. Using machine-learning (ML) algorithms to predict trajectories allows one to greatly extend the integration time step, at the cost of introducing artifacts such as lack of energy conservation and loss of equipartition between different degrees of freedom of a system. We propose learning data-driven structure-preserving (symplectic and time-reversible) maps to generate long-time-step classical dynamics, showing that this method is equivalent to learning the mechanical action of the system of interest. We show that an action-derived ML integrator eliminates the pathological behavior of non-structure-preserving ML predictors, and that the method can be applied iteratively, serving as a correction to computationally cheaper direct predictors.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets