Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 434 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

On Some Tunable Multi-fidelity Bayesian Optimization Frameworks (2508.01013v1)

Published 1 Aug 2025 in cs.LG, cs.AI, and math.OC

Abstract: Multi-fidelity optimization employs surrogate models that integrate information from varying levels of fidelity to guide efficient exploration of complex design spaces while minimizing the reliance on (expensive) high-fidelity objective function evaluations. To advance Gaussian Process (GP)-based multi-fidelity optimization, we implement a proximity-based acquisition strategy that simplifies fidelity selection by eliminating the need for separate acquisition functions at each fidelity level. We also enable multi-fidelity Upper Confidence Bound (UCB) strategies by combining them with multi-fidelity GPs rather than the standard GPs typically used. We benchmark these approaches alongside other multi-fidelity acquisition strategies (including fidelity-weighted approaches) comparing their performance, reliance on high-fidelity evaluations, and hyperparameter tunability in representative optimization tasks. The results highlight the capability of the proximity-based multi-fidelity acquisition function to deliver consistent control over high-fidelity usage while maintaining convergence efficiency. Our illustrative examples include multi-fidelity chemical kinetic models, both homogeneous and heterogeneous (dynamic catalysis for ammonia production).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube