Proof of Hiding Conjecture in Gaussian Boson Sampling (2508.00983v1)
Abstract: Gaussian boson sampling (GBS) is a promising protocol for demonstrating quantum computational advantage. One of the key steps for proving classical hardness of GBS is the so-called hiding conjecture'', which asserts that one can
hide'' a complex Gaussian matrix as a submatrix of the outer product of Haar unitary submatrices in total variation distance. In this paper, we prove the hiding conjecture for input states with the maximal number of squeezed states, which is a setup that has recently been realized experimentally [Madsen et al., Nature 606, 75 (2022)]. In this setting, the hiding conjecture states that a $o(\sqrt{M})\times o(\sqrt{M})$ submatrix of an $M\times M$ circular orthogonal ensemble (COE) random matrix can be well-approximated by a complex Gaussian matrix in total variation distance as $M\to\infty$. This is the first rigorous proof of the hiding property for GBS in the experimentally relevant regime, and puts the argument for hardness of classically simulating GBS with a maximal number of squeezed states on a comparable level to that of the conventional boson sampling of [Aaronson and Arkhipov, Theory Comput. 9, 143 (2013)].
Collections
Sign up for free to add this paper to one or more collections.